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ABSTRACT 

A number of recent studies have suggested that cosmions, or WIMPS, may play an important 
role in the energetics of the solar interior; in particular, it has been argued that these hypotheti- 
cal particles may transport sufficient energy within the nuclear-burning solar core so ss to 
depress the solar core temperature to the point of resolving the solar neutrino problem [I]. Solu- 
tions to the solar neutrino problem have proven themselves to be quite nonunique [2], so that it 
is of some interest whether the cosmion solution can be tested in some independent manner [31. 
In this Letter, we argue, first, that if cosmions solve the solar neutrino problem, then they must 
also play an important role in the evolution of low msss main sequence stars; and, second, that 
if they do so, then a simple (long mean free path) model for the interaction of cosmions with 
baryons leads to changes in the structure of the nuclear-burning core which may be in principal 
observable. Such changes include suppression of a fully-convective core in very low ma38 main 
sequence stars; and a possible thermal runaway in the core of the nuclear burning region. Some 
of these changes may be directly observable, and hence may provide independent constraints on 
the properties of the cosmions required to solve the solar neutrino problem, perhaps even ruling 
them out. 
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Simple physical arguments suggest that if cosmions transport a significant fraction of the 
energy liberated in the nuclear-burning core of a very low-mass star, then it may well be possible 
to prevent the cores of such stars from becoming fully convective. Such changes in stellar struc- 
ture might be directly observable: Suppose, for example, that the lower convection zone boun- 
dary can be pushed well outside of the core region of an ordinarily fully-convective, 0.2~o main 
sequence star. The corresponding temperature and hydrostatic pressure readjustments may then 
lead to sufficiently large (210%) changes in the star’s radius and/or luminosity that they can be 
confirmed or excluded by, for example, comparing such models with observations of nearby, 
well-measured eclipsing visual binaries of low maSS [4]; alternatively, it may be possible to test 
for such changes in stellar structure by observing the spectrum of low-degree p-modes, ss has 
been done for the Sun in order to measure the extent of its convection zone [S]. The detailed 
analysis briefly described in the following has led us not only to explore these questions, but also 
to obtain (unexpected) results on the possible instability of the core, which may provide yet 
further observational constraints on cosmions in the future. 

To begin with, we note that the gravitational potential of low mass stars (we fix for con- 
venience on a star with msss 0.2 Mo) is such that the rates of cosmion capture and evaporation 
are very similar to the corresponding rates in the Sun. So, unlike the csse for giant branch 
stars, any cosmionrelevant to the solar neutrino problem will also be relevant for these lower 
msss stars. Furthermore, solar evolutionary models which include cosmions show that by the 
time these weakly-interacting particles produce noticable effects in the solar interior, they carry 
an appreciable fraction of the solar luminosity in the nuclear-burning core; hence, our initial 
arguments suggested that cosmions may well suppress the onset of convection near the core of 
very low msss stars simply by flattening the actual temperature gradient below the adiabatic 
value within the core. 

These idess led us to investigate the problem quantitatively, based on a more accurate 
evaluation of the cosmion trapping efficiency by the stellar gravitational potential, and the use 
of a stellar evolutionary code (courtesy of Llben) to evolve the type of star in question on the 
main sequence. In the main, our procedures are very similar to those described by Gilliland er 
al. [l]; in particular, the interaction between ccamions and ordinary baryonic matter for low 
msss stars is best described by the small interaction cross section limit first studied by Spergel 
and Press [l]. We parametrize the cosmions by the same three parameters ss Gilliland et al. [I], 
namely the cosmion cross section, mass, and abundance; and use the same values of these 
parameters which Gilliland et al. claim solve the solar neutrino problem. For these parameters 
in a 0.2Mo star, we find a capture rate [6] of 30% of the capture rate for the Sun, implying a 
cosmion abundance of 30% of the corresponding solar abundance at a given age. The evapora- 
tion msss 171, e.g., the msss of the lightest ccsmion that will not evaporate in a solar age, is the 
same as for the Sun within the uncertainties of the calculations. Energy transport by cosmions 
is handled in exactly the same way as in Gilliland el al. (see their equation 3). The star is thus 
evolved in time, while simultaneously the number of cosmions within the potential increases 
because of accretion. 



Figure 1 compares the interior temperature profile for two converged solutions to the stellar 
evolution equations which include cosmion energy transport at two successive times; the later 
solution is obtained near the last time step I = f. (= = 2.7~10' yrs) for which we were able to 
obtain a converged solution for the cosmion case. At this time step, one can already see the 
dominance of energy transport in the core by cosmions (Figure 2); that is, cosmion energy tran- 
sport so dominates the core regions of the star that thermal convection is entirely suppressed. 
The temperature profile is very comfortably subadiabatic, and in the very center of the core 
even shows evidence for an increase in temperature with radius. We can thus conclude that the 
inclusion of cosmions does indeed prevent the formation of a fully-convective core in very low 
mass main sequence stars. Can this be observed? Recall that the lowest I p-modes are sensitive 
to the structure of the star’s interior at the depth, and on the scale, of the changes we are seeing 
here [5]; and that furthermore these same low I modes can be in principle detected from 
spatially-unresolved stellar observations [S]. For the relatively dim low-mass stars here in ques- 
tion, such observations cannot be sensibly carried out at present (both because of the intrinsic 
faintness of the stars and because the expected amplitude of these p-modes is likely to be far 
lower than in the solar case); but this may not be an obstacle for observations carried out with 
the new generation of 8 meter and larger optical telescopes. 

The second point of note is the aforementioned lack of convergence at t = f.. In order to 
convince ourselves that this failure of convergence was not simply a matter of numerical inade- 
quacy of the code we were using, we evolved the same star using different gridding schemes and 
different time steps (always obtaining the same result); and evolved the same star using a totally 
different evolutionary code [9], which also fails to converge when the cosmion luminosity begins 
to dominate energy transport in the core. Close inspection of the iterates for the final time step 
shows that the interior solution experiences a thermal runaway in the very central core. This 
last result must be carefully interpreted. Strictly speaking, relaxation codes of the type we used 
do not follow the time evolution of the star wilhin a given relaxation cycle; instead, the thermal 
runaway seen within the final relaxation cycle is more properly regarded as evidence that no 
equilibrium solution obeying the assumed equations of stellar evolution exists at that time, near 
to the solution obtained in the previous time step. Note that we find our result to be entirely 
independent of the size of the time step, suggesting that the problem is the absence of an equili- 
brium solution, and not the absence of a nearby equilibrium solution. Can we explain the termi- 
nation of the sequence of equilibrium solutions? 

In the absence of reevolving the star using a fully dynamic stellar interior code (rather than 
the standard hydrostatic model we used), this question can only be answered by appealing to a 
local stability analysis within the core. This task is simplified substantially by the fact that at 
the last converged time step, the nuclear-burning core has a rather flat temperature distribution, 
so that a local analysis should be adequate for the purpose of establishing the stability proper- 
ties of this core. Our starting point is then one of the standard forms of the time-dependent 
energy equation [lo], 

together with the equation for hydrostatic equilibrium, dp/dr = - ~9, e.g., we assume in the fol- 
lowing that the instability occurs on time scales long when compared to typical dynamical time 
scales. All thermodynamic quantities have their customary meaning; and c., and r. are the 
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specific luminosities for nuclear burning and cosmion energy transport, respectively (cf. equation 
3 in Gilliland et al. [l]). In a one-zone approximation for the virtually isothermal core (e.g. Fig- 
ure I), and using the fact that the first term on the right-hand side of (1) remains relatively 
small, we obtain a model equation for the core baryon temperature T of the form 

dr 7 = Oexp[-Q/r’/s] - 

where the first term on the right hand side represents nuclear burning and the second term 
represents cosmion transport in the large Knudsen number limit; I 3 T/T,, where rO is the ini- 
tial isothermal temperature, r. is the scaled cosmion temperature, and m,/mb (= 5) is the ratio 
of the cosmion to baryon mass. The coefficients s (- 6.8), b (= 18.1), and c (- 4.3~10~7 are all 

positive definite; and the coefficient e is only linearly dependent upon density. The core baryon 
density (p) evolution is again fixed by the hydrostatic equation. For simplicity, sssume that the 
crxmion temperature remains fixed; this is not an unreasonable assumption as r, < r<,,, and 
increases throughout the evolution, and e varies with ezp(--B/r.), so that the coefficient of the 
loss term in (2) is bounded from above. It is then readily shown that the core temperature eve 
lution equation (2) has a solution which becomes unbounded in finite time. Although other phy- 
sical processes not considered in this model will clearly intervene to prevent this from occuring, 
this result nevertheless suggests that such low-mass stars might have a drastically different svo 
lutionary behavior than standard models predict. 

The physical cause of this instability is readily found. In a normal star (or in a star in 
which the cosmion-baryon interaction falls in the small Knudsen number limit, so that energy 
transport by cosmions obeys a diffusion-like equation), the interior core temperature - and 
hence the nuclear burning rate - is regulated by the twin demands for energy balance and 
hydrostatic equilibrium. For example, if nuclear burning were to be shut off within the core, dif- 
fusive energy transport alone would tend to lower the core temperature, and hence tend to lower 
the core pressure; instead, the demand for hydrostatic equilibrium maintains the core pressure 
by leading to a contraction of the core, and hence to a corresponding heating of the core (as a 
result of the transformation of gravitational potential energy into the form of heat). In this 
way, the core temperature is maintained by virtue of the core’s contraction despite the cutoff of 
core nuclear burning, and hence the external appearance of the star would remain the same for 
time scales of order the Kelvin-Helmholz contraction time for the core. More precisely, in an 
actual “standard” star, the consequence of this hemostat-like regulation of the core conditions is 
that the nuclear burning rate is fixed by a combination of the pressure stratification demanded 
by the equation of hydrostatic equilibrum and the temperature stratification imposed by the dif- 
fusive photon energy transport equation. 

What fails in a star dominated by cosmion energy transport in the small cross section limit 
is the tie between pressure regulation of the core by the hydrostatic equation and regulation of 
the core temperature structure by the local energy balance and transport equations. In particu- 
lar, energy transport in the core at the final converged time step of our stellar evolution code is 
beginning to be dominated by cosmions, which carry the energy liberated in the core by nuclear 
burning well outside the nuclear burning region. This energy transport is sufficiently effective to 
virtually isotherm&e the core region; the resulting spatial uniformity of the temperature distri- 
bution, together with the non-local nature of cosmion energy transport in the small cosmion- 
baryon interaction cross section limit we are in, implies that the temperature profile in the core 
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is no longer regulated by a local diffusion equation. As a consequence, the core baryon tempera- 
ture T is fixed solely by a local balance between nuclear burning and (non-local) removal of 
energy by cosmions, as illustrated by equation (2) above. This balance is stable for sufficiently 
weak temperature dependences of the nuclear burning rate; but for a more realistic 
temperature-dependence of cm*, this balance is unstable to a classical superheating instability 
familiar in gas and plasma dynamics, in which the increase of the local heating rate with tem- 
perature overwhelms the increased efficiency of energy losses with increasing temperature, In 
ordinary stars, such instabilities are suppressed by radiative conduction, which is here ineffective 
during the crucial initial phase of the instability; in fact, as shown in Figure 1, radiative tran- 
sport acts to heat the central core at the time of the last converged solution. 

The conclusions to be drawn from our results are however tempered by several limitations 
of our analysis. To begin with, the single-zone stability analysis cannot determine the ultimate 
fate of the instability; saturation of the instability is not captured by our analysis, and hence 
the possibility remains that there are no observable consequences of the thermal runaway in the 
core. This limitation can clearly be overcome with the use of more sophisticated, dynamical stel- 
lar evolution simulations. We note that the results of the evolutionary stellar structure code 
argue against the possibility of restabilization at drastically different, but still hydrostatic, core 
conditions; indeed, inspection of successive iterations suggest that the thermal runaway may lead 
to rapid mixing in the core on dynamical time scales, driven by Rayleigh-Taylor instabilities, 
However, in the absence of computations with a fully-dynamic code, this remains speculative. 
Stabilization by radiative transport seems unlikely in light of the rapid onset of the instability; 
indeed, we suspect that a significant reason for the lack of convergence of the evolution code is 
that - ss in the case of a helium flash - standard evolutionary stellar structure code cannot 
follow the dynamics as the evolutionary time scale changes by so many orders of magnitude. 
We further note that the small interaction cross section limit considered here has the defect that 
the cosmion temperature is assumed to be spatially uniform; in fact, one expects the cosmion 
temperature to roughly follow the form of gravitational potential [II], and hence to decrease 
with distance from the core. Qualitatively, the principal effects of this temperature variation are 
to decrease the volume within which cosmions redistribute the energy liberated in the core, and 
to raise the casmion temperature in the core region. The latter effect will decrease the effective- 
ness of cosmion energy transport within the-core region; and as a result, one would expect the 
onset of the instability to be postponed beyond the point indicated in our simulations, but for 
the initial linear instability growth rate to be somewhat increased once cosmion energy transport 
dominates photon energy transport. Thus, it seems that the isothermal cosmion temperature 
assumption is very likely a satisfactory model for measuring the impact of cosmion energy tran- 
sport on the evolution of low-mass stars. Finally, we note that S. Raby has recently found 
results rather similar to those found here, but for a evolution model for the Sun [12]; how our 
results and those of his relate remains to be seen. 

Acknowledgments: We would like to thank very useful conversations with A. Gould, H. van 
Horn, E. N. Parker, and M. Savedov; R. Gilliland for access to his stellar evolution code and for 
useful discussions; and finally I. Iben for access to his stellar evolution code. This work was sup 
ported in part by the NASA Solar-Terrestrial Theory Program (at Chicago), by DOE (at Chi- 
cago), and by DOE and NASA (at Fermilab) ( NAGti- 13 UO) . 



-5- 

1. Spergel, D. N., and W. H. Press Astrophys. J, 296, 663 (1985); Faulkner, J., and R. L. Gilli- 
land Aatrophys. J., 299, 994 (1985); Gilliland, R., J. Faulkner, W. H. Press, and D. N. 
Spergel Astrophys. J., 306, 703 (1986); Spergel, D. N., and J. Faulkner Ap. J. (Letters), 
331, L21 (1988). 

2. Bahcall, J., and R. Ulrich Rev. Modern Phys., 60, 297 (1988). 
3. Rood, R. T., and A. Renzini in Astronomy, Cosmology and Fundamental Physics, M. Caffo, 

R. Fanti, G. Giacomelli, and A. Renzini, eds. (Dordrecht: Kluwer), in press (1988); Raf- 
felt, G. G., and D. S. P. Dearborn Phys. Rev., D37, 549 (1988); Salati, P., A. Bouquet, 
and J. Kaplan, preprint (1988). 

4. Popper, D. M. Ann. Rev. Astron. Ap., 18, 115 (1980). 
5: See, for example, Duvall, Jr., T. L., and J. W. Harvey Nature, 310, 19 (1984). 
6. Gould, A. Astrophys. J., 321, 521 (1987); Gould, A., private communication. 
7. Griest, K., and D. Seckel Nucl. Phys., B283, 681 (1987); B296, 1034 (1988). 
8. cf. review by K. G. Libbrecht, Space Sci. Rev., 47, 275 (1988). 
9. Gilliland, R. L. “SOLEVL - A User’s Manual” (Boulder: NCAR, 1987). 
10. cf. equation (4.31) in J. P. Cox, Theory o/Stellar Pulsation (Princeton: Princeton Univ. Press, 

1980). 
11. Nauenberg, M. Phys. Rev., D36, 1080 (1987); Gould, A., and G. Raffelt, private communi- 

cation. 
12. Raby, S., preprint (1989). 

Figure 1: Baryon temperature (in units of 10’ K) as a function of mass (in solar mass units) for a 
0.2 solar mass star at an age of 5.1~10’ years (solid) and 2.7~10s years (dashed); both 
results are for fully-converged solutions to the stellar evolution equations including 
energy transport by cosmions, and in both cases, the surface temperature is 3.23x& K. 

Figure 2: Energy balance within a 0.2 solar mass star at an age of 2.7~108 years, The different 
contributions to the differential luminosity (dL/dM) are plotted, as well as their sum, 
versus the mass coordinate (in solar mass units): the nuclear contribution (solid); the 
wimp contribution (dash dot); the gravitational contribution (dash dot dot dot); the 
radiative contribution (dashed); and the sum of all contributions (dotted). e.- and eil, 
are the clearly dominant contributors, while the radiative contribution is not only small, 
but also positive in the core (because of a slight temperature inversion within the core). 
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